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Abstract 

In this paper it is shown that (1) linear transformations more general than the Lorentz 
transformation--containing the Palacios and the Lorentz transformation as special 
cases--(2) and the 'principle' of the constancy of the velocity of light (taken originally by 
Einstein together with the supposition of the linearity of transformation as fundamental 
hypotheses of the theory of special relativity)--can be deduced from MaxweU's equations 
for the electromagnetic field in vacuo (A1), the principle of relativity (AD and the two 
following axioms (which do not contain explicitly the hypothesis oftheisotropy of space!): 
(As) to every event in the Galilean reference system S there corresponds one and only one 
event in the system S '  so that these two systems are connected by reversible single-valued 
functions, continuously differentiable as their inverse transformations, (A4) the constant 
relative velocities v~, and v~,s between S and S'  are each other equal in magnitude and 
opposite in sign vs~, = -v~,~. To obtain uniquely the Lorentz transformation the following 
axiom has to be added: (As) the distance D of any two points at rest in S, situated in a 
plane orthogonal to the relative velocity between S and S '  is measured S '  as independent 
of the sense of the velocity, i.e. if one changes v~, into -v~, the distance D does not vary 
for an observer in S'. Results of our theory are the ideas that (a) the fact that the Lorentz 
transformation is not the unique transformation leaving Maxwelrs equations for the 
electromagnetic field in all Galilean systems of reference invariant but that there exists a 
more general transformation (containing these two transformations as special cases) 
leaving Maxwell's equations invariant; (b) that the Michelson-Morley as well as the 
Fizeau experiment does not represent an experimental proof in favour of the theory of 
special relativity. At the end of the paper the mutual relations between the principle of 
relativity (the axiom A~ together with the axiom A2), the axiom As and the possibility of 
the discernibility as well as the indiscernibility of 'right' and 'left' at the macrocosmic 
level is discussed. 

1. Introduction 

The foundat ions  of  mathematics  is today a fertile and  well-established 
b ranch  of mathematics.  The foundat ions  of  physics are in their first 
beginnings:  the investigations concerning the logical structure, such as, for 
example, the quest ion of the mutua l  dependence or  independence of  some 
basic statements of  the major i ty  of  the physical theories, are in  their 
embryonic  or at  best at a protoscientifie level. Founda t ions  research 
consists in  the e l iminat ion of logical inconsistencies by means of the 
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axiomatic method. At a certain point in the development every theory 
becomes mature for axiomatization. By axiomatization of a theory the 
logically unperspicuous set of propositions becomes well organized, the 
structure of a theory becomes clear and perspicuous (Bunge, 1967). The 
present paper is a contribution to the foundations of the theory of special 
relativity. It issues from the author's critical study of Einstein's 1905 paper 
'Zur Elektrodynamik bewegter Krrper' and the fundamental axiomatic 
problem if the theory of special relativity could not be founded without the 
supposition of the linearity of transformation connecting any two Galilean 
systems of reference and the 'principle' of the constancy of the velocity of 
light starting from Maxwell's equations for the electromagnetic field in 
vacuo, the principle of relativity and some other basic axioms of physics. 
The results of the author's former investigations obtained in 1962 and 
presented in his Doctor-thesis at the Technical University of Munich 
(Stiegler, 1963) are, in the present paper, generalized and enlarged. 

2. The Set of  Basic Axioms 

Our considerations are based on the following set of four axioms: 

A 1. For the electromagnetic phenomena in vacuo Maxwell's equations 

rot ~ = 1 a~ rot.~ = ___1 a~ div ~ = 0 div ~ = 0 
c Ot c Ot 

are valid, e being the velocity of light in vacuo. 
A2. In all Galilean systems of reference the physical laws have the same 

analytical form (principle of relativity). 
A3. To every event in the Galilean system of reference S there corresponds 

one and only one event in the Galilean system of reference S'  and 
conversely, so that the coordinates and the times of these two systems 
are connected by reversible single-valued functions 

xt' =f~(v, xo, xl ,x2,x~) i = O, 1, 2, 3 

These functions and their corresponding inverse transformations are 
continuously differentiable, where 

X o  = ct xl = x x 2  = y x 3  = z 

and 
X o '  = Ct l ' X I '  = X '  X 2 '  ~ y ' X 3 '  = 2 ' 

v being the relative velocity of the systems of reference S and S', e' 
the velocity of light in the system S' ,  for which we do not know a 
priori if it is equal to the constant c of the velocity of light in the 
system S, 

A4. The constant relative velocities vs~, and v~,s of the Galilean systems of 
reference S and S'  are to each other oppositely equal 

Vss" = - - V s ' s  
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3. Consequences from the Given Set of Basic Axioms 

Let A j, A2, �9 �9 A, be a set of propositions of a theory z. Then one of the 
fundamental problems is the question on the independency of the set of 
propositions A1, Az, �9 �9 A,. The proof of independency of a set of pro- 
positions A1, A2 . . . . .  A, of a theory ~- consists in that it will be shown that 
the proposition Ak for any k ~ {1,2,..., n} is not a theorem within ~-, where 
the propositions Az, l # k, are taken as  axioms of ~-. If  one succeeds in 
showing that there exists a unique proposition Ak which is a theorem in ~-, 
the other propositions Az, l # k, being axioms of ~-, then such a system of 
propositions AI, A2, �9 �9 Ak, �9 �9 -, A,, will not be independent (Bourbaki, 
1960). 

In the following it shall be proved concretely that the linearity of trans- 
formation, the 'principle' of the constancy of the velocity of light and 
consequently the more general transformation (3.3.2) are theorems in our 
theory which is based on the axioms A1, Az, A3 and A4. 

A surprising consequence of our theory is the result that the axioms 
A~-A4 conduce to a more general transformation (3.3.2) which leaves 
Maxwell's equations for the electromagnetic field invariant, containing the 
Lorentz and the Palacios transformation as special cases. Thus the theory 
based on the set of axioms A~, A2, A 3 and A4, given in Section 2, contains 
the theory of special relativity and the Palacios theory as special cases. 

3.1. The Linearity of Transformation 
For the following considerations the equation for the propagation of the 

electromagnetic wave-front 

1 [OSg~ 2 
~-~--~] - (gradQ) 2 = 0 (3.1.1) 

has a fundamental importance, Q(x,y,z,t)= 0 being the equation of the 
wave surface. This equation follows directly from Maxwell's equations for 
the electromagnetic field in vacuo (A O. Equation (3.1.1) can be reduced to 
the form of the Hamilton-Jacobi differential equation of classical mechanics 
(Fock, 1960a). 

aO 
at ~- cv'(Ox2 + O~2 + O'2) = 0 (3.1.2) 

The quantity corresponds to the action function S, the derivatives Qx, Oy, O z 
to the momenta p~, Pr, P~, the function 

H =  e~/(Ox 2 + Oy z + Q z) (3.1.3) 

to the Hamilton function and the light rays to the trajectories of material 
particles. The system of characteristic differential equations corresponding 
to the equation 

aO 
at ~- H(Ox' or, O~) = 0 (3.1.4) 
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is given by 

dt dx ,6' az 
1 on/og2~ on/og2 v on/og2~ 

dQ d~  t 

~, + ~x(aHlaOA + ~,(aHlaQ,) + ~,(aHla~z) -aHlat 
dS2~ dr2, d,O, 

= - a n l a x  - a ~ l a y  = -a~ iOz  (3.1.5) 

The differential equations for  the rays are then given by 

dx OH -Qx dy OH ~y 

dz aH Q, 
dt OQ, = c. V,(~x2 + ~Qy2 + $-22) (3.1.6a) 

dQ~ OH= 0 dQ~. OH dQ, OH (3.1.6b) 
d t =  - Ox dt = - -~y = 0 dt Oz 

These equations are analogous to Hami l ton ' s  equations of  classical 
mechanics.  F r o m  (3.1.6b) it is evident that  Ox, Oy and g2~ are constant  a long 
a ray. The  equations of  rays are then 

x - Xo = c. ~/(g2x 2 + g2y 2 + ~ f l )  (t - to) 

Y - -  Y0 = C. ~V/(~x 2 + ~'~y2 ..~ ~t'~z2 ) (t - to) 

z - Zo = c. X/(g2x 2 +-g2~ 2 + g2z2) (t - to) (3.1.7) 

and tha t  means  that  the light is p ropaga ted  rectilinearly with constant  
velocity. 

I f  ~Q~ represents the wave-surface corresponding to a 
definite instant  to and Xo, Yo, Zo are its coordinates,  for  the direction cosines 
o f  the normal  to this surface we have 

S2x ~ 
~(Xo, yo, Zo) = o 2 o 2 o 2 

V ( ~  + ~  + ~  ) 
Qyo 

/~(Xo,yo, Zo) = v,(~o~ + ~o~ + ~o~) 

7(xo,Yo, Zo) = ~/(g2o 2 + $2o 2 + g2o2) (3.1.8) 
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and consequently for equations of  a ray going through the point (xo ,Yo ,  Zo) 
of  the initial wave-surface 

x - Xo = ow(t  - -  to) 

Y - Yo = 3 c ( t  - -  to) 

z - Zo = 7'c(t  - to) (3.1.9) 

From (3.1.7) and (3.1.9) there follows 

c2( t  - t0) 2 - [(x - Xo) 2 + (y - yo) 2 + (z - z0) 2] = 0 (3.1.10) 

According to the axioms AI and A2 in the Galilean system of reference S '  
we have 

1 0 9 '  rot'.~' 1 0~' 
rot '  ~ '  c '  Ot'  = ~ i  7 div' ~ '  = 0 div' ~3' = 0 

and consequently 

c '2( t  ' - to') 2 - [(x' - Xo') z + (y'  - y o ' )  2 + (z' - z0') z] = 0 (3.1.10') 

c' being the velocity of  light in the system S' ,  for which we do not know 
a p r i o r i  if it equals the constant c in the system S. 

In differential form we have 

c2 d t  2 - ( d x  2 + d y  2 + d z  2) = 0 (3.1.11) 

c'2 d t  '2 - ( d x  '2 + d y  '2 + d z  '2) = 0 (3.1.11') 

Relations (3.1.10) and (3.1.10') between the coordinates of the initial and 
the final point of any ray represents a sphere in S and S '  with the centre 
(xo ,Yo ,  Zo) and (Xo ' ,Yo ' ,  Zo') and the radius R = c. (t - to) and R' = c'. (t '  - t0') 
respectively, expressing the fact that in every inertial system of reference 
taken as a whole the velocity of light is equal in all directions. 

Besides this, from (3.1.7) and (3.1.9) it follows that the light is propagated 
rectilinearly with constant velocity. According to the axiom A z  this is valid 
in all Galilean systems of  reference. 

With the aid of  the quantities 

eo = 1 el = e2 = r = -1  (3.1.12a) 

and the symmetrical notations 

Xo = c t  Xl  = x x z  = y x3  = z (3.1.12b) 

one can write the equations (3.1.11) and (3.1.11') in the form 

el d x i  dx~ = 0 (3.1.13) 

and (i = O, 1, 2, 3) 
e~ d x (  d x (  = 0 (3.1.13') 

respectively, summation on index i. 
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The coordinates and the times of both the Galilean systems of reference 
S and S'  are connected by the functions (axiom A3) 

x{=.f~(v, Xo, Xl,X2,X3) ( i= 0, 1,2,3) (3.1.14) 

From the supposition about the functions3~ made in the axiom A3--namely, 
that the transformation (3.1.14) is single-valued and reversible and that 
(3.1.14) and the inverse transformation corresponding to it is continuously 
differentiable--it follows that the Jacobi determinant is different from zero 

Oxk ~ 0 (3.1.14') 

In accordance to our set of basic axioms A~, A2, .4 3 and A4 and conse- 
quently to the relation (3.1.14') we shall determine the functions (3.1.14). 

From (3.1.14) results 

_ 0f~ .t.. ( i =  0, 1 , 2 , 3 )  
dxi'--ff~Xk~"~k (k = 0, 1,2, 3) (3.1.15) 

and from (3.1.13') and (3.1.15) 

a A o A . .  
e, dxi' dxt'= e, ff~Xk-~Xz axkaxl = U (3.1.16) 

On the other hand 
ei dx~ dxi --- ek 3kt dxk dxt = 0 (3.1,17) 

3u being the Kronecker symbol. 
From (3.1.16) and (3.1.17) then follows 

aAaA el ~ . . . .  = Aek 3kZ (3.1.18) 

where ~ is a function of the relative velocity v of the Galilean systems of 
reference S and S'  and coordinates x0, xl, x2 and x3, 

A = ~(v, xo, xl,x2,x3) 

which must be determined. This being the first condition for the functionsf~. 
Now we denote by ~0, ~1, ~2, ~3 the arbitrary initial values of the co- 

ordinates xo, x~, x2 and x3 and introduce the parameter 

and the quantities 

c 
s = floo (t - to) (3.1.19) 

/~, = ~ (i = 1, 2, 3) (3 .1 .20)  
c 

where flo >0 and v~ are the components of the constant relative velocity v of 
the Galilean system of reference S and S'. A rectilinear uniform motion 
with respect to the system S can be represented by 

x , = r  ( i=  0, 1,2,3) (3.1.21) 
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Since a rectilinear motion with respect to the system S will be also a 
rectilinear one relative to a Galilean system of reference S', we have 

xi' = ~ '  + Bi( s' (3.1.21') 

From (3.1.21') one gets 
3 

dx,' ~,' (dfdds)ds k=o 
= - 3 = const. 

axo' ~ (afo/as)as E/LOA/ax~) 
/r 

(3.1.22) 

and therefrom by logarithmic derivation with respect to the parameter s 

3 3 

E flkflt(aZfo/aXkBX,) E flkfl,(B2fo/aXkaXt) 
k,~=0 k.~=0 (3.1.23) 

3 3 

E 5k(afo/ax~) E Maf,/ax~) 
k=O k=0 

These relations must be identically satisfied in fl~ and x~. 
Taking into account, that according to (3.1.14'), the Jacobi functional 

determinant is different from zero 

al, 
Oxk # 0  

and that, on the other hand, J3~, because of the rectilinear uniform motion 
(v~ # 0) of both the Galilean systems of reference S and S',  according to 
(3.1.20), are also different from zero, there follows, in accordance with a 
fundamental theorem of algebra, that all determinants in (3.1.23) cannot be 
simultaneously equal to zero. Consequently, all the fractions must then have 
always finite values, even if a denominator equals zero. But this is only 
possible if in these fractions the numerators are divisible by the corre- 
sponding denominators, i.e. if the expressions in (3.1.23) are not at all 
fractions but integer rational functions of fl~, for which we write 

3 

X ~5,02A/ax~ Ox,) 3 
k.l=o 3 = 2 E filXz (3.1.24) 

E [3~(~A/ax~) ,=o 
k~O 

Xt being in general functions of xo, x~, x2, x3 and v. 

X~ = X~(V, Xo, xl,  x2, x3) 

Since the last relation is an identity in fl~ the following holds 

B2f~ = X~__~ + X,O~ ~ (3.1.25) 
Oxk Ox~ 
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We now differentiate (3.1.18) with respect to x,, and put 

Oh 
Ox--~ = 2r (3.1.26) 

tbm being generally a function of v, x0, xl, x2, x3. From the relation obtained 
in this way, considering (3.1.25), it follows by permutation of indices l ~ m 
and division by ;L 

Xm ek 3kl + Xk em 3,,1 + 2Xz em 3,,k = 2~z ek 3kin (3.1.27) 

where 

r - qh (3.1.28)  

Because the relation (3.1.27) must be identically satisfied for all the values 
of k, l and m, there results, especially for k = m, m r I, 

and also for k = l 

Consequently we have 

Xz = ~l (l = 0, 1, 2, 3) 

Xr,=0 

(3.1.29) 

(3,1.30) 

(3.1.31) X~ = ~ l  = 0 

Then from (3.1.26), (3.1.28) and (3.1.31) one gets O)~/OXm = 0, i.e. 

= )~(v) (3.1.32) 

and from (3.1.25) and (3.1.30), for the functionsfi, the relation 

02f~ = 0 (3.1.33) 
OXk OXt 

This is the second condition for the functions f~. On the basis of these 
considerations it follows finally that the functionsf~ satisfying the conditions 
(3.1.18) and (3.1.33) must necessarily be linear 

x{ =fz(v, x0, xl, x2, x3) = ~/[h(v)] (ek aig xk + CO (3.1.34) 

C~ being additive constants. All these constants C~ vanish if we suppose that 
the coordinate origins of both the Galilean systems of reference S and S '  
coincide at the moment t = 0. In this case we have 

x~' = f~(v, x0, xl, x2, x3) = V'[h(v)] ek aik xk (3.1.35) 

For the inverse transformations one obtains 

1 
xi = ~-A ek au x~' (3.1.36) 

Consequently the linearity of transformation is a theorem within our theory 
which is based on the axioms Al, A2, A3 and A4. 
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3.2. The Law of the Constancy of the Velocity of Light 

It may be pointed out that the 'principle' of the constancy of the velocity 
of light, introduced by Einstein as a hypothesis, is composed of two 
assertions. The first of these tells us that in any Galilean system of reference 
the velocity of light in vacuo is the same in all directions and the second 
means that this velocity has always the same amount in every such system 
independently of the velocity of the source of light. From (3.1.18) and 
(3.1.33) as well from (3.1.11) and (3.1.13) and (3.1.34) for the coefficients 
of the linear transformation there result the relations 

e~ alkali = e~ 3~1 (3.2.1) 

ei aki au = ek 3kt (3.2.2)  

In the system S'  we take a point which is at rest. Relative to an observer in 
the system S this point is moving with a constant veloeity, the components 
of which we shall denote by vl, v2 and v3. Then 

dxi dx~ 
vi = ~ = C~x ~ for Xl t = X 2, = X3 t = 0 (3.2.3) 

Denoting by vl', v2' and v3' the components of the velocity of a point being 
at rest in the system S, then, in the system S',  we have 

dxi' = c' dx(  
vi' = dt' dxo' for xl = ~72 = x3 = 0 (3.2.4) 

From (3.1.34) and (3.2.3) and (3.1.33) and (3.2.4) there follows respectively 

a0___2 = v~ (3.2.5) 
a0o e 

aio v l  t 
(3.2.6) 

Ooo c' 

c' being the velocity of light in the system S'. We do not know a priori if it 
equals the constant c of the velocity of light in the system S. 

From (3.2.1) and (3.2.2) for k = l = 0 there results 

ao2o _ 2 2 (alo + a2o + a~o) = 1 (3.2.7) 

ao2o -- (ao21 + a22 + aoZ3) = 1 (3.2.8) 

and therefrom with the aid of the relations (3.2.5) and (3.2.6) 

1 
V:~ 2 + V:~ 2) = ~2(Vl z + V2 2 + V3 2) (3.2.9) ~-~tvl" ,z + 

Assume for a moment that 

v l = v  v2=v3=O (3.2.10) 
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and that the X'-axis of  the Galilean system of reference S: coincides with 
the X-axis of  the system S. The Y'- and Z'-axis shall be parallel to the Y- 
and Z-axis respectively. For  the points of  the system S' ,  for  which 
:f' = y := 2' = 0, it will be (in the system S) ~ = v, p = 2 = 0, while for the 
points of  the system S, for which g = p = 2 = 0, according to the axiom Aa 
the relations 

: c ' = v / = v ' = - v  ~P=v2 '=0  2'=vs '=O (3.2.11) 
are valid. 

From (3.2.9) and (3.2.11) there follows then, necessarily, the fundamental 
relation 

c = e' (3.2.12) 

That  means: The velocity of  light in vaeuo is independent o f  the relative 
velocity of  the Galilean systems of  reference S and S '  and represents 
consequently a universal constant. This is the "principle' o f  constancy of  
the velocity of  light which Einstein has originally taken as a fundamental 
hypothesis of his theory. In our theoly, based on the set of  axioms A l, A2, A3 
and A4, the proposition (3.2.12) is a theorem. 

3.3. The Determination of the Coe~cients of the Transformation (3.2.1) 
From (3.2.I), (3.2.2), (3.2.5), (3.2.6) and (3.2.12) one can determine the 

coefficients of  the transformation (3.1.35) and (3.1.36) in the known way 
(Fock, 1960b). These coefficients are then 

1 
a00 = V[1 - (v21c2)1 

v l / e  l - O  

a0, %/[I - (v2]c2)] a,o ~[1  - (v2/c;)] 
3 ( 1 

a i k  = --ocik  - -  1 V[ 1 . -(VUC2) _ V .  Vl 

where i, k = l, 2, 3. 

(3.3.1) 

The quantities ~lk in (3.3.1) are the cosines of the angles between the old 
and the new coordinate axes where the first index i relates to the new and the 
second index k to the old ones. Taking that in the two Galilean systems S 
and S '  the X- and X'-axes coincide permanently and that the axes Y and Z 
are permanently parallel to the axes Y' and Z" respectively, for the trans- 
formation connecting the coordinates of  the both systems S and S '  we obtain 

x' = ~/(A) k ( x -  vt) 

where 
1 

= ,~(v) k = V'[1 - -  ( / ) 2 / e 2 ) ]  (3.3.2) 
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A very relevant consequence of our theory is the result that the axioms 
AI, A2, A3 and A4 lead to a more general transformation (3.3.2) (since 

= ~(v) is an arbitrary function of v), which leaves the Maxwell equations 
for the electromagnetic field invariant and contains the Lorentz and the 
Palacios transformation (Palacios, 1960) as special cases for A(v)= 1 and 
?,(v) = [1 - ( v 2 / c 2 ) ]  - 1  respectively. Thus the Lorentz transformation is not 
the unique transformation leaving the Maxwell equations for the electro- 
magnetic field invariant with respect to the Galilean systems of reference as 
Einstein considered, but there exists a large class of transformations having 
this property. 

The Lorentz transformation follows only in the case if to the axioms A~, 
A2, A3 and A4 the following axiom of Einstein is added: 

As. Let S and S' be two Galilean systems of reference moving relatively 
to each other with a definite velocity +v or - v  along the X- and 
X'-axis, which coincide, such that the Y- and Y'-axis and the Z- and 
Z'-axis are parallel. The distance of any two points at rest in S, 
situated in a plane orthogonal to the X-axis, is relative to the Galilean 
system of reference S'  independent of the direction of the velocity. 
The same is true for any two points at rest in S', situated in a plane 
orthogonal to the X'-axis. 

Only in this case it follows that A = ~(v) = A(-v) and A(v) A(-v) = 1 and 
consequently ?t = 1 (Pauli, 1921). 

Our general transformation (3.3.2) leads to the known formulae for the 
transformation of the components of velocities in the system S and S'  

~ ,  = ~ -  v 9~, ~ v ' [ 1  - (v2/c2)] ~, 2 V ' [ 1  - (v2/c2)] 
1 - (v2~/c 2) = 1 - (v2/e z) = 1 - (v2/e z) (3.3.3) 

(3.3.3) being the common formulae for the special theory of relativity and 
for the Palacios theory (Stiegler, 1971). 

3.4. A View that the Miehelson-Morley Experiment does not Act  as a Proof  
o f  the Validity o f  the Theory o f  Special Relativity 

It is interesting to point out that the fundamental relation (3.2.12) 
expressing the so called 'principle' of the constancy of the velocity of light 
as well as the transformation (3.3.2)--containing the Lorentz and the 
Palacios transformation as special eases--are logical consequences 
(theorems) of the theory which is based on the axioms A1, Az, A3 and A4. 
We know that the negative result of the Michelson-Morley experiment can 
be explained by means of (3.2.12), i.e. on the basis of the 'principle' of the 
constancy of the velocity of light. But, since the relation e = e' is a conse- 
quence (theorem) of the theory based on the axioms A j, A2, A3 and A4, it is 
a proposition of a theory which is more general than the theory of special 
relativity and Palacios theory being a common theorem of both these 
theories. Thus the proposition (3.2.12), i.e. the fundamental relation c = e', 
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is contained not only in the Lorentz but also in the Palacios transformation, 
which are special cases of the general transformation (3.3.2), differing 
basically the one from the other. Consequently the Michelson-Morley 
experiment does not represent an experimental proof in favour of  the theory 
of special relativity. 

3.5. Some General Remarks Concerning the Theoretical Explanations of the 
Fizeau Experiment, Doppler Effect and Aberration of Light 

It is not difficult to see that with the aid of our general transformation 
(3.3.2) one gets the well-known expression for the velocity of light in moving 
water 

u~=2=n,+V 1 -  

in agreement with the result obtained by Fizeau. Consequently the Fizeau 
experiment does not represent an experimental proof in favour of the 
theory of  special relativity. On the other hand, (3.3.2) gives for the general 
Doppler effect the expressions 

1 1 - (v/c) cos ** 
t 

1-' = ~ - ~ . l ~  5r 1 - -  (132/C2) ] 
cos a - (v/c) cosfl' cosflv'[1 - (v2/c2)] 

cos m' = 1 - (v[c) cos oc = 1 - (v/c) cos c~ 

COS y~/[1 - -  ( / ) 2 / C 2 ) ]  

cos y'  = 1 - (v/c) cos 

Denoting by 3 the angle between the old and the new direction of the 
wave-normal, then respecting the above expressions, for the variation of the 
direction of the wave-normal we get the known expression 

cos 3 = cos ~ cos ~' + cos fl cos B' + cos y cos y'  

c o s  ~ [cos  a - (v/c)]  + ( c o s  g ~ + c o s  2 ~ , )v ' [1  - (v2/d)] 
1 - ( v / c )  c o s  

The Palacios theory, corresponding to the special case A(v) = [1 - (vZ/cZ)] -l, 
gives for the Doppler effect the original expression v'= v [ 1 -  (v/c)cos~] 
and for the aberration of light [~ = 0r/2)] the expression v' = v, while the 
Lorentz transformation, corresponding to the special case A(v)= 1, 
conduces to the Einstein expression 

v ' =  v(1--~-~]u2'~-I/2 ~,'~ ' v(1 +~)1v2~ 

representing an effect of the second order. 

3.6. The Principle of Relativity and the Discernibility and the Indiscernibility 
of 'Right' and 'Left' 

Take now three Galilean systems of reference S, S '  and S" such that 
S'  relative to S and S" relative to S '  moves with the velocity v. Let, x, y, z, t 
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be coordinates and time; X, Y, Z the components of the vector of the 
electric and L, M, N the components of the vector of the magnetic field 
relative to S. Let further x', y', z', t '  and x", y", z", t" be coordinates and 
times, then X', Y', Z '  and X", Y", Z" and L', M' ,  N'  and L", M", N" the 
components of the vector of the electric and of the magnetic field in S' and 
S" respectively. 

The coordinates and times of S' and S on one and S" and S'  on the 
other hand are connected by the general transformation 

x' = ~/[)t(v)] k(x - vt) 
y '=  C[~t(v)]y 
z' = V'[~t(v)] z (3.6.1) 

t ' = ~/ [ ~(v) ] k (  t - v-~2) 

and 

respectively, with 

x"=C[2(v)lk(x'-vt') 
y"= v'[A(v)ly' 
z"=a / [a (v ) l z '  

t " = v / [ A ( v ) l k ( t ' - v x ' ]  
c 2 ] 

1 
k ~  

~/[1 -- (V2/C91 

For the Maxwell's equations in S we have 

l a x  aN aM I OL OZ OY 
cat ay az cat ay az 
l a Y  OL aN l aM a x  az  
c a i  az ax c at = a z  Ox 
l aZ OM aL l aN aY a x  
cat ax ay cat ax Oy 

(3.6.2) 

(3.6.3) 

(3.6.4) 

c at' ay' az' c at' ay' Oz' 
l a Y '  a u  aN' l aM' OX' az '  
c at' az' ax' c at' az' ax' 
l aZ' aM' OL' l aN' OY' OX' 
c at' ax' ay' c at' ax' ay' 
ax '  o r '  az'  aL' aM' aN' 
ax' ~--~+~,=o ~x,+-~+~z,=O 

aX aY aZ aL aM aN 
a x + ~ + ~  =o ~x+-~+~ =o 

In accordance with the principle of relativity (A 1) in the system S' it will be 

l a X '  aN' OM' I OL' ~Z' aY' 
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and:in the system S" 

laX" ON" OM" l OZ" aZ" OY" 
e a t " =  -Oy" az" e at" - ay" Oz" 
lOY" OL" ON" laM" aX" OZ" 
e at" Oz" ax" e at" Oz" ax" (3.6.5) 
I OZ" aM" OL" 1ON" OY" OX" 
e at" ax" ay" c at" Ox" Oy" 
ax"  aY" Oz" OL" aM" ON" 
ax-  + + = o  = o  

From (3.6.1) and (3.6.3) we get: 

IOX Ok[U-(v/c)  Y] Ok[M+(v/c)Z] 
c at' Oy' az' 

1 Ok[ Y -  (v/c)N] = aL Ok[N-  (v/c) Y] 
c at' Oz' ax' 
1 Ok[Z + (vie)m] = Ok[m + (v/e)Z] OL 
e at' Ox' Oy' 

1 oi. Ok[Y-(vie)N] ak[Z+(v /e )m]  + 
c at' az' ay' 

1 ak[m + (v/c) Z] ak[Z + (v/c) M] -~ OX 
e at' ax' az' 
1 Ok[N-  (v/e) Y] a S  Ok[ Y -  (v/c) N] 
c at' Oy' Ox' 

where 

In an analogous way to 

1 aX e 

c at" 
1 Ok[Y' - (v/c)N'] 
e Ot" 
1 ak[Z' + (v/c)M'l  
c at" 

laL'  
e at" 

_ 1  Ok[M' + (v/e)Z'] = _ak[Z '  + (v/e) M'] -~ OX' 
e at" Ox" az" 
1 ak[N' - (v/c) Y'] = _ a x '  + Ok[ Y' - (v/c) N'] 
c Ot" Oy" ax" 

(3.6.6) 

1 
k 

- (v2/c2)1 
the above, from (3.6.2) and (3.6.4) it follows that 

Ok[N ' -  (v/c) Y'] Ok[M' + (v/c)Z'] 
Oy" Oz" 

= OL' _ Ok[N ' -  (v/c) Y'I 
Oz" OX" 
Ok[m' + (v/e)Z'] OL' 

Ox" ay" 
Ok[Y ' - (v /e )U ' ]  Ok[Z' +(v/c)M']  

+ (3.6.7) 
Oz" ay" 
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By comparison of  (3.6.4) and (3.6.6) we get 

x!  = v'[a(v)l x 

Y'= ~/[2(v)]k( Y-V N) 
L '  = ~v/[X(v)] L 

M'= V[)t(v)lk(M + ~Z) 

N; = x/[2t(v)]k(N- ~ Y) 

and also by comparison of  (3.6.5) and (3.6.7) 

x " =  ~/[;~(v)] x' L"= V[~(v)IL' 
Y"= ~/[;t(v)]k( y ' - v  N ') 

Z" = .v/[A(V)]k(Z ' + V-eM' ) 

M" = ~c/[2t(v)] k(M' + ~ Z ') 

N" = ~/[A(v)]k N ' -  ' 
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(3.6.8) 

(3.6.9) 

(3.6.12) 

(3.6.13) 

L' = a/[;~(-v)]L 

M'='V/[2t(-v)]k(M-~ Z) (3.6.14) 

N'= V'['~(-v)]k(N + v Y) 

X"=X Y"= Y Z"=Z L"=L 
Then from (3.6.10) and (3.6.8) it results 

2@). A('v) = 1 

From the relation (3.6.12) it follows 
1 

~(-v)  = Z(v) 

Taking v ~ - v  in (3.6.8) we get 
X'  = a/[~(-v)] X 

M"=M N"=N (3.6.11) 

Taking now especially that  S" is moving relative to S '  with the velocity 
-v ,  then S" wilt be at rest relative to S. In this case it follows from (3.6.9) 

x"  = v'P,(-v)] x '  

Y" = V[;~(-v)lk(Y' + ~ N ' )  

Z"= ~Dt(-v)lk(Z'-V M ') 
L"  = v/[A(-v)] L '  (3.6.10) 

Taking into account that S" is at rest relative to S, it follows that 
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a n d  respect ing  (3 .6 .13)  

1 1 
' L'  = x = V[ (vl] x L 

1 v 

, 1 1 v 

(3.6.15) 

By a comparison of  (3.6.8) with (3.6.15), we see that changing the direction 
of  the relative velocity v =~ -v ,  i.e. changing the 'left' and the 'right', the 
components of  the vector of  the electric and the magnetic field will be 
changed, i.e. the 'right' is not equivalent to the 'left' and vice versa. That 
means that the validity of  the relation (3.6.12) is equivalent with the 
discernibility of the 'left' from the 'right'. We see further, that changing 
v =~ -v ,  this difference between the 'right' and the 'left' disappears, if we 
suppose the validity of the axiom As. In this case y'  = y, z' = z, and from 
(3.6.1) it follows that ~(v) = 1 and respecting (3.6.13) also A(-v) = 1, i.e., 

)t(v) = A(-v) (3.6.16) 

The axiom A5 or the relation (3.6.16) is thus equivalent to the indiscernibility 
of 'right' and 'left'. 

Further, we see also that the validity of  the principle of  relativity, i.e. 
the axiom A 1, together with A2, is compatible with the existence of  the 
relation (3.6.12) and (3.6,16), i.e. with the discernibility as well as with the 
indiscernibility of'right' and 'left' in the physical space. 

But the indiscernibility of  'right' and 'left', i.e. the validity of the axiom 
As or, equivalently, the relations (3.6.12) and (3.6.16), is equivalent to the 
existence of  the Lorentz transformation 

x - v t  t - ( v x l c  2) 
X '  = t '  - -  ~[1 (v2/c2)] y ' = y  z ' = z  (3.6.17) - - (v2/e2) l  

On the other hand, the assumption of the validity of  the discernibility of  
'right' and 'left' (i.e. the assumption that the axiom A5 is not valid!) is 
equivalent to the existence of  the general transformation (3.3.2), which 
contains the Palacios transformation as a special case for 

= [ 1  - (v2/c2)1-1.  

3.7. To Decide the Question of the Discernibility or lndiscernibility of the 
'Right" from the "Left' at the Macrocosmic Level 

We come now to the very important question of  whether in macro- 
cosmical reality the indiscernibility of  'right' from 'left' is valid or not. 
This question can be solved only by experiments. We know, for example, 
that the theory of  aberration of light shows that the expression 

l )  
v' (3.7.1) ~/[1 - (v2/e2)] 
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is valid exactly if and only if the Lorentz transformation (3.6.17) holds 
exactly. In reality, the experiments do not agree exactly with (3.7.1) but 
only with the approximate expression v ' =  v[1 + �89 In fact, this 
approximate relation does not correspond to the Lorentz transformation 
with A(v) = 1, but to a transformation of the form (3.3.2) h(v) being generally 
a function of  v/c, which is, as we already know, equivalent to the validity 
of  discernibility of  'right' from 'left' at the macrocosmic level. 

The postulate (principle) of  the indiscernibility of  'right' and 'left ' ,  i.e. 
the space-reflection invariance, was questioned for the first time in 1956 
by Yang and Lee in connection with the theory of weak interactions. The 
violation of  this 'principle' in connection with weak interactions has been 
proved experimentally by Wu, Schopper and others. 
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